A State Space Compression Method Based on Multivariate Analysis for Reinforcement Learning in High-Dimensional Continuous State Spaces
نویسنده
چکیده
SUMMARY A state space compression method based on multivariate analysis was developed and applied to reinforcement learning for high-dimensional continuous state spaces. First, useful components in the state variables of an environment are extracted and meaningless ones are removed by using multiple regression analysis. Next, the state space of the environment is compressed by using principal component analysis so that only a few principal components can express the dynamics of the environment. Then, a basis of a feature space for function approximation is constructed based on orthonormal bases of the important principal components. A feature space is thus autonomously construct without preliminary knowledge of the environment, and the environment is effectively expressed in the feature space. An example synchronization problem for multiple logistic maps was solved using this method, demonstrating that it solves the curse of dimensionality and exhibits high performance without suffering from disturbance states.
منابع مشابه
Reinforcement Learning with Particle Swarm Optimization Policy (PSO-P) in Continuous State and Action Spaces
This article introduces a model-based reinforcement learning (RL) approach for continuous state and action spaces. While most RL methods try to find closed-form policies, the approach taken here employs numerical on-line optimization of control action sequences. First, a general method for reformulating RL problems as optimization tasks is provided. Subsequently, Particle Swarm Optimization (PS...
متن کاملA Function Approximation Method for Model-based High-Dimensional Inverse Reinforcement Learning
This works handles the inverse reinforcement learning problem in high-dimensional state spaces, which relies on an efficient solution of model-based high-dimensional reinforcement learning problems. To solve the computationally expensive reinforcement learning problems, we propose a function approximation method to ensure that the Bellman Optimality Equation always holds, and then estimate a fu...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملCover tree Bayesian reinforcement learning
This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed form. The tree structure itself is constructed using the cover tree method, which remains efficient in high dimensional spaces. We combine the...
متن کاملReinforcement Learning In Real-Time Strategy Games
We consider the problem of effective and automated decisionmaking in modern real-time strategy (RTS) games through the use of reinforcement learning techniques. RTS games constitute environments with large, high-dimensional and continuous state and action spaces with temporally-extended actions. To operate under such environments we propose Exlos, a stable, model-based MonteCarlo method. Contra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 89-A شماره
صفحات -
تاریخ انتشار 2006